Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata 2

Σχετικά έγγραφα
1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα

SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou)

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

11 OktwbrÐou S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR

Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

GENIKEUMENA OLOKLHRWMATA

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN.

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Mègisth ro - elˆqisth tom

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ

ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA

Ανάλυση ις. συστήματα

Στατιστική για Χημικούς Μηχανικούς

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2

Ask seic me ton Metasqhmatismì Laplace

Κλασσική Ηλεκτροδυναμική II

JEMATA EXETASEWN Pragmatik Anˆlush I

Eisagwg sthn KosmologÐa

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Farkas. αx+(1 α)y C. λx+(1 λ)y i I A i. λ 1,...,λ m 0 me λ 1 + +λ m = m. i=1 λ i = 1. i=1 λ ia i A. j=1 λ ja j A. An µ := λ λ k = 0 a λ k

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA

Θεωρία Πιθανοτήτων και Στατιστική

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata

Στατιστική για Χημικούς Μηχανικούς

HU215 - Frontist rio : Seirèc Fourier

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i)

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB

thlèfwno: , H YHFIAKH TAXH A' GumnasÐou Miqˆlhc TzoÔmac Sq. Sumb. kl.

Θεωρία Πιθανοτήτων και Στατιστική

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN. Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN

ΜΕΤΑΒΟΛΙΚΕΣ ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΕΥΘΕΡΩΝ ΣΥΝΟΡΩΝ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΝΙΠΥΡΑΚΗ ΜΑΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

SofÐa ZafeirÐdou: GewmetrÐec

f(x) =x x 2 = x x 2 x =0 x(x 1) = 0,

Upologistikˆ Zht mata se Sumbibastikèc YhfoforÐec

Ergasthriak 'Askhsh 2

2+sin^2(x+2)+cos^2(x+2) Δ ν =[1 1 2 ν 1, ν ) ( ( π (x α) ημ β α π ) ) +1 + a 2

Shmei seic sto mˆjhma Analutik GewmetrÐa

Ανάλυση ασκήσεις. συστήματα

Upologistik Fusik Exetastik PerÐodoc IanouarÐou 2013


στο Αριστοτέλειο υλικού.

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA


Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart sewn

Shmei seic Sunarthsiak c Anˆlushc

Anaz thsh eustaj n troqi n se triplˆ sust mata swmˆtwn

στο Αριστοτέλειο υλικού.

SUNOLA BIRKHOFF JAMES ϵ ORJOGWNIOTHTAS KAI ARIJMHTIKA PEDIA

Shmei seic sto mˆjhma Analutik GewmetrÐa

Eukleideiec Gewmetriec

2 PerÐlhyh Se aut n thn ergasða, parousi zoume tic basikìterec klassikèc proseggðseic epðlushc Polu-antikeimenik n Problhm twn BeltistopoÐhshs(PPB) ka

KBANTOMHQANIKH II (Tm ma A. Laqanˆ) 28 AugoÔstou m Upìdeixh: Na qrhsimopoihjeð to je rhma virial 2 T = r V.

1, 3, 5, 7, 9,... 2, 4, 6, 8, 10,... 1, 4, 7, 10, 13,... 2, 5, 8, 11, 14,... 3, 6, 9, 12, 15,...

spin triplet S =1,M S =0 = ( + ) 2 S =1,M S = 1 = spin singlet S =0,M S =0 = ( )

APEIROSTIKOS LOGISMOS I

Tm ma Fusik c Mˆjhma: Pijanìthtec -Sfˆlmata-Statistik PerÐodoc: Febrouˆrioc 2008

Ergasthriak 'Askhsh 3

Ανάλυση. σήματα και συστήματα

t t j=1 span(x) = { 1-1

MELETH TWN RIZWN TWN ASSOCIATED ORJOGWNIWN

ΜΑΘΗΜΑΤΙΚΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

JewrÐa UpologismoÔ. Grammatikèc QwrÐc Sumfrazìmena kai Autìmata StoÐbac

N.Σ. Μαυρογιάννης 2010


G. A. Cohen ** stìqo thn kubernhtik nomojesða kai politik, den upˆrqei tðpota to qarakthristikì sth morf thc.)

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

2

Didaktorikèc spoudèc stic HPA, sta Majhmatikˆ. 20 MartÐou 2015

Φυλλο 3, 9 Απριλιου Ροδόλφος Μπόρης

EISAGWGH STON PROGRAMMATISMO ( ) 'Askhsh 2

Ανάλυση ΙΙ Σεπτέµβριος 2012 (Λύσεις)


Σήματα Συστήματα Ανάλυση Fourier για σήματα και συστήματα συνεχούς χρόνου Περιοδικά Σήματα (Σειρά Fourier)

ENA TAXIDI STH SUNOQH. g ab T a bc. R i jkl

Σχόλια για το Μάθημα. Λουκάς Βλάχος

Σχήμα 1.1: Διάφορες ισόχρονες καμπύλες με διαφορετικές μεταλλικότητες Ζ, και περιεκτικότητα σε ήλιο Υ.

EUSTAJEIA DUNAMIKWN SUSTHMATWN 1 Eisagwg O skop c tou par ntoc kefala ou e nai na parousi sei th basik jewr a gia th mel th thc eust jeiac en c mh gra

Στατιστική για Χημικούς Μηχανικούς

L mma thc 'Antlhshc. A. K. Kapìrhc

9.2 Μελετώντας τρισδιάστατα γραφικά στο επίπεδο Oi sunartήseiv Contour Plot kai DensityPlot

Ta Jewr mata Alexander kai Markov thc JewrÐac Kìmbwn

EfarmogËc twn markobian n alus dwn

Autìmath Exagwg Peril yewn kai h Axiolìghs touc

Transcript:

Jeìdwroc Alexìpouloc, Anaplhrwt c Kajhght c Theodoros Alexopoulos, Associate Professor EJNIKO METSOBIO POLUTEQNEIO NATIONAL TECHNICAL UNIVERSITY SQOLH EFARMOSMENWN MAJHMATIKWN KAI DEPARTMENT OF PHYSICS FUSIKWN EPISTHMWN - TOMEAS FUSIKHS ZOGRAFOU CAMPUS HRWWN POLUTEQNEIOU 9 57 80 ATHENS - GREECE AJHNA 57 80 Phone : +30 0 77-309, Fax: +30 0 77-305 Thl: 0 77-309, Fax: 0 77-305 e-mail: Theodoros.Alexopoulos@cern.ch e-mail: theoalex@central.ntua.gr html://www.physics.ntua.gr/faculty/theoalex Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata (Epistrof : IanouarÐou 004) 0. Upˆrqoun diˆforoi trìpoi gia na genikeôsoume thn idèa twn sunart sewn diˆkrishc dôo klˆsewn se C klˆseic ω, ω,..., ω k. 'Enac trìpoc ja eðnai na qrhsimopoi soume (C ) sunart seic diˆkrishc, ètsi ste an g k ( x ) > 0 tìte to deðgma x ω k, en an g k ( x ) < 0 tìte x ω k. Me th bo jeia enìc paradeðgmatoc se dôo diastˆseic gia C = 3 (treic klˆseic), na deðxete ìti autìc o trìpoc taxinìmhshc mporeð na odhg sei se perioqèc sto deigmatoq ro twn x gia tic opoðec h taxinìmhsh ja eðnai asaf c. 'Enac ˆlloc trìpoc eðnai na qrhsimopoi soume mia sunˆrthsh diˆkrishc g jk ( x ) gia kˆje dunatì zeôgoc klˆsewn ω j kai ω k, ètsi ste gia g jk ( x ) > 0 to x ω j kai gia g jk ( x ) < 0 to x ω k. Gia C klˆseic, apaitoôntai C(C )/ sunart seic diˆkrishc. Me èna aplì parˆdeigma se dôo diastˆseic gia C = 3, na deðxete ìti kai autìc o trìpoc ja odhg sei se asafeðc perioqèc taxinìmhshc. Gia treic klˆseic C = 3, ja upˆrqoun dôo grammikèc sunart seic diˆkrishc g ( x )g ( x ). ja isqôei: gia x C, tìte g ( x ) > 0 kai gia x C, tìte g ( x ) > 0. Autì ja odhg sei sto akìloujo prìblhma. P c ja mporèsoume na taxinom soume deðgmata x ta opoða èqoun thn idiìthta: g ( x ) > 0 KAI g ( x ) > 0. Profan c tètoia x ja an koun kai stic dôo klˆseic, dhlad C KAI C. To sq ma perigrˆfei autì to prìblhma. Akìmh kai sthn perðptwsh pou jewr soume tic dôo sunart seic diˆkrishc parˆllhlec metaxô

g ( x ) > 0 g ( x ) < 0 g ( x ) < 0 g ( x ) > 0 Sq ma : Oi dôo grammikèc sunart seic diˆkrishc profan c orðzoun perioq tou q rou (grammoskiasmènh perioq ) pou taxinomeðtai stic dôo klˆseic sugqrìnwc. touc, de ja èqoume lôsh tou probl matoc, kajìti h tom twn g ( x ) > 0 KAI g ( x ) > 0 eðnai èna mh-kenì sônolo. ParathreÐste oti h tom twn g ( x ) > 0 KAI g ( x ) > 0 eðnai èna kenì sônolo mìno sthn perðptwsh pou oi dôo grammikèc sunart seic diˆkrishc sumpðptoun, pou shmaðnei g ( x ) = g ( x ). Gia treic klˆseic C = 3, ja upˆrqoun C(C )/ = 3 sunart seic diˆkrishc, g ( x ), g 3 ( x ), g 3 )( x ). O kanìnac taxinìmhshc ja eðnai wc akoloôjwc:. An g ( x ) > 0 KAI y 3 ( x ) > 0, tìte x C.. An g ( x ) < 0 KAI y 3 ( x ) > 0, tìte x C. 3. An g 3 ( x ) < 0 KAI y 3 ( x ) < 0, tìte x C 3. Autìc o kanìnac taxinìmhshc odhgeð sto akìloujo prìblhma, ìpwc faðnetai sto sq ma 6. perioq de mporeð na taxinomhjeð. H akìloujh. g ( x ) < 0 KAI g 3 ( x ) > 0.. g ( x ) > 0 KAI g 3 ( x ) > 0 KAI g 3 ( x ) < 0. 0. 'Estw ta 6 deðgmata ekpaðdeushc pou an koun se dôo klˆseic ω, ω, ìpwc faðnontai sto sq ma (3):

g ( x ) < 0 g ( x ) > 0 C 3 C g 3 ( x ) > 0 g 3 ( x ) < 0 g 3 ( x ) < 0 C g 3 ( x ) > 0 Sq ma : Oi treic sunart seic diˆkrishc profan c orðzoun perioq tou q rou pou den taxinomeðtai. [ Z Z [ Sq ma 3: 3

( ) ( ) ( ) ( ) ( ) ( ) 0 S =,,,,,. 0 0 }{{}}{{} ω Na orðsete èna neur na (perceptron) pou na orðsei thn taxinìmhsh aut n twn dôo klˆsewn. Dhlad, orðste tic sunˆyeic w, w kai to kat fli w 0. ω [ Z Z [ Z \ Z L L L [ Z Sq ma 4: x επιφάνεια απόφασης - - - x - Sq ma 5: 4

Profan c h epifˆneia apìfashc eðnai: x = x + x x + = 0, ìpwc faðnetai sto sq ma 5. Epomènwc h exðswsh aut mporeð na jewrhjeð wc : w x + w x + w 0 = 0, () ìpou w =, w =, kai w 0 =, kai h exðswsh () eðnai: w = ( w w ) = ( / ), w 0 =, w t x + w0 = 0, me x = ( x x ) t. x w Σ x w w 0 συνάρτηση ενεργοποίησης Sq ma 6: 'Ara h taxinìmhsh èqei wc akoloôjwc: 5

{ ( + ) w t x + w0 = < 0 ω : ( ) w t x + w 0 = / < 0 ω : ( 0 0 ) w t x + w 0 = > 0 ( ) w t x + w 0 = > 0 ( 0 ) w t x + w 0 = > 0 ( ) w t x + w 0 = > 0 }. 0.3 JewreÐste ton algìrijmo thc apìtomhc pt shc (steepest descent) ìpou h sunˆrthsh kìstouc J(w) = k (w w 0 ) + k. (a) BreÐte th bèltisth lôsh w pou elaqistopoieð th sunˆrthsh kìstouc J(w). (b) Me th bo jeia tou algorðjmou thc apìtomhc pt shc: w(i + ) = w(i) + ϱ dj dw, na breðte mia analutik èkfrash tou w(i). JumhjeÐte p c epilôame diaforoexis seic apì thn Anˆlush S matoc! Na breðte th sunj kh pou prèpei na upakoôei h parˆmetroc tou rujmoô ekmˆjhshc ϱ, ste o algìrijmoc thc apìtomhc pt shc na sugklðnei. (g) Na breðte to ìrio tou w(i) gia i. (a) (b) O algìrijmoc thc apìtomhc pt shc ja eðnai: dj dw = k (w w 0 ) = 0 w = w 0. w(i + ) = w(i) + ϱk (w(i) w 0 ) w(i + ) = ( ϱk )w(i) + ϱk w 0 i w(i) = ( ϱk ) i w(0) + ( ϱk ) j ϱk w 0 6 j=0

w(i) = ( ϱk ) i ϱk w 0 w(0) + ( ϱk ) Epomènwc to w i gia na sugklðnei, ja prèpei na isqôei: w(i) = ( ϱk ) i w(0) + w 0. () ϱk < < ϱk < (g) Apì th sqèsh (): k < ϱ < 0 lim w(i) = w(0). i 0.4 'Estw x eðnai mia tuqaða metablht me mèsh tim µ kai pðnaka diasporˆc Σ. Na deðxete ìti o Σ eðnai jetikˆ orismènoc, dhlad na deðxete ìti: 'Estw y èna mh mhdenikì diˆnusma. Tìte: y t Σ y > 0 y 0. y t Σ y = y t E [ ( x µ )( x µ ) t] y = E [ y t ( x µ )( x µ ) t y ]. (3) OrÐzoume mia nèa bajmwt metablht : A = y t ( x µ ). (4) ParathroÔme oti to A eðnai mia tuqaða metablht me mèsh tim mhdèn. Apì tic sqèseic (3) kai (4) ja èqoume: y t Σ y = E[A ] = σa > 0, ìpou σ A eðnai h diasporˆ thc tuqaðac metablht c A. 7

0.5 'Estw to diˆnusma x = (x x ) t eðnai katanemhmèno katˆ Gauss me puknìthtec pijanìthtac p( x /ω i ) N( µ i, σ I). Na sqediˆsete tic epifˆneiec apìfashc gia èna taxinomht elˆqisthc eukleðdeiac apìstashc an èqoume 5 klˆseic me tic akìloujec mèsec timèc: µ = (0 0) t, µ = ( 0) t, µ 3 = ( 0) t, µ 4 = ( ) t, µ 5 = ( ) t. Oi epifˆneiec apìfashc gia tic pènte klˆseic faðnontai sto sq ma 7. x - - - x - Sq ma 7: 8

0.6 DÐnontai ta parakˆtw dianôsmata ekpaðdeushc: ( ) ( ) ( ) ( ) ( ) 0, 0, 0, 5,, S =,,,,, 0, 0, 0, 0, 8, }{{} ( ) ( ) ( ) ( ) ( ),, 5 0, 9 0, 0,,,,,. 0, 0, 5 0,, 0, 9 }{{} ω Na deðxete grafikˆ ìti autˆ den eðnai grammikˆ diaqwrðsima gegonìta, kai na sqediasteð mia katˆllhlh arqitektonik Perceptron pou na ta diaqwrðzei. ω x,5 ω ω 0,5 - + g ( x ) = 0 - + 0,5,5 g ( x ) = 0 x Sq ma 8: Apì to sq ma 8, profan c oi dôo klˆseic den eðnai grammikˆ diaqwrðsimec. MporoÔme na dialèxoume dôo eujeðec: x + x = 0, kai x + x 3 3 = 0, ste ta deðgmata thc klˆshc ω na brejoôn metaxô twn dôo epifanei n diˆkrishc. Ja qreiastoôme dôo str mata gia th sqedðash tou Perceptron. To krufì str ma ja perièqei dôo neur nec me exìdouc y, y. O q roc y, y faðnetai sto sq ma 9. 9

x x y y 0, -0, 0 0 0, 0, 0 0-0,5 0, 0 0, 0,8,,, -0, 0,5 0,6 0 0,9 0, 0 0,, 0 0, 0,9 0 y ω ω 0,5 ω y Sq ma 9: Dhlad ja mporèsoume na èqoume mia epifˆneia apìfashc: y y = 0, pou mporeð na diaqwrðsei ta ω, ω, ìpwc faðnetai sto sq ma.epomènwc to neurwnikì dðktuo ja eðnai autì pou faðnetai sto sq ma 0. 0.7 Upojèste ìti dôo sônola S kai S sto q ro R l eðnai grammikˆ diaqwrðsima. Dhlad, upˆrqei èna diˆnusma w R l kai èna bajmwtì w 0 R, ètsi ste: w t x + w0 = { > 0 x S < 0 x S 0

x y x - y - -3 -/ y Sq ma 0: JewreÐste ta nèa dianôsmata wc akoloôjwc: ( x ) x =, w = ( w w 0 ). (a) Na deðxete ìti w tˆx > 0 ˆx, an to prìshmo twn dianusmˆtwn ˆx tou sunìlou S allˆzei. (b) Na perigrˆyete grafikˆ tð sumbaðnei sto er thma (a) ìtan l =, S = { 3,, }, kai S = {5, 6, 7}. (a) Profan c isqôei: w t x w0 = ( w w 0 ) ( x ) = w tˆx. An x S w tˆx > 0. An x S w tˆx < 0 w t ( )ˆx > 0. Epomènwc an to prìshmo tou ˆx allˆzei ìtan to x S, ja isqôei h sqèsh w tˆx > 0 ˆx. (b) H allag tou pros mou perigrˆfetai sto sq ma. Metˆ apì thn allag thc metablht c se ˆx kai thn allag tou pros mou ìla ta deðgmata brðskontai sthn Ðdia pleurˆ thc epifˆneiac apìfashc.

x x x x πριν µετά Sq ma : 0.8 Ston algìrijmo tou neur na (Perceptron) èqoume: w (i + ) = w (i) + ϱ(i) x i, ìtan to x i èqei taxinomhjeð lanjasmèna, dhlad, w t x i < 0. Na breðte th sunj kh pou dièpei thn parˆmetro tou rujmoô ekmˆjhshc ϱ(i), ètsi ste to x na taxinomhjeð orjˆ sto b ma i +. An w (i) t x i < 0, tìte to ˆx i èqei taxinomhjeð lanjasmèna sto i ostì b ma tou algorðjmou. Epomènwc gia na èqoume th swst taxinìmhsh tou x i sto epìmeno b ma, to w (i) ja prèpei na allˆxei me tètoio trìpo ste w (i + ) t x i > 0. O algìrijmoc eðnai: w (i + ) = w (i) + ρ x i w (i + ) t x i = ( w (i) + ρ x i ) t x i ω (i + ) x i = w t x i + ρ x i > 0 ρ > w t x i x i.

0.9 'Estw ìti ta sônola S, S eðnai grammikˆ diaqwrðsima, kai èqoume gegonìta ekpaðdeushc x = S, x = S kai x 3 = S. H arqik tim tou dianôsmatoc w eðnai w (0) = (, ) t, kai h parˆmetroc tou rujmoô ekmˆjhshc eðnai ϱ = 0, 5. Na prosdioristeð to diˆnusma w ste o algìrijmoc tou Perceptron na mac d sei thn orj taxinìmhsh. Ja qrhsimopoi soume ton algìrijmo tou Perceptron. Se kˆje b ma tou algorðjmou, ja kanonikopoioôme ta dianôsmata bˆrouc ŵ = w / w. H orjìthta thc taxinìmhshc ja elègqetai gia kˆje b ma. Ta dianôsmata bˆrouc ja dðnontai apì th sqèsh: ŵ(i + ) = ŵ(i) 0, 5 3 σ xi x i, ìpou σ xi = an to deðgma x i ω allˆ taxinomeðtai sthn klˆsh ω, σ xi = + an to deðgma x i ω allˆ taxinomeðtai sthn klˆsh ω, kai se ìlec tic peript seic σ xi = 0. B ma Diˆnusma Kanonikopoihmèno DeÐgmata algorðjmou bˆrouc diˆnusma bˆrouc me lˆjoc taxinìmhsh 0 w = ( ) t (0, 707 0, 707) t x, x 3 w = (, 9 0, 7) t ( 0, 88 0, 48) t x w = ( 0, 38 0, 0) t (, 00 0, 05) t x 3 w = ( 0, 50 0, 55) t ( 0, 67 0, 74) t kanèna i= 0.0 (a) Na efarmìsete ton aplì algìrijmo eôreshc twn protôpwn gia ta dianôsmata: {( ) ( ) ( ) ( ) ( ) ( )} 0 0 5 5 4 S =,,,,,. 0 4 5 5 0 JewreÐste ìti to kat fli T = 3. (b) Na efarmìsete th mèjodo MaxMin sto deigmatoq ro S tou erwt matoc (a). (g) Na efarmìsete th mèjodo twn K-mèswn (K-means) sto deigmatoq ro S tou erwt matoc (a). (a) EÐnai parìmoia thc ˆskhshc?? (b) blèpe ˆskhsh?? (g) blèpe ˆskhsh?? 3